
Scalable Statistical Bug Isolation
- Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, 

Michael I. Jordan

Tao Xia
Oct 12, 2006



Algorithm

• A debugging algorithm to locate the cause 
of a failure (bug)

• Identifies the most important bug with 
most failures

• Suggest the area of the bug, but not the 
exact location



Random Sampling

• Goal
– Keep performance overhead low
– Limit storage and transmission costs

• Sampling rate: 1/100
• Each sample is independent from each 

other



Instrumentation Site

• Any collection of statements within a 
program

• Three instrumentation schema for C:
– Branches (true/false)
– Returns (<0, <=0, >0, >=0, =0, !=0)
– Scalar-pairs (assignment) (<, <=, >, >=, =, !=)



Definitions
• Failure

• Context

• Increase

– Predicate P is a bug predictor
– F(P): number of failure runs in which P is obesrved to be true
– S(P): number of success runs in which P is obesrved to be true



Discarded Data

• if Failure(P) = 0, then P has no predict 
power

• If Increase(P) <=0, then P has no predict 
power

• Redundancy elimination
– Importance



Predicates stats with out 
redundancy elimination

• Black: Context(P)  Red: Increase(P) Pink: Confidence Interval White: S(P)



Experiment

• Five case studies
• About 32000 random inputs



Experiment Results

• Black: Context(P)  Red: Increase(P) Pink: Confidence Interval White: S(P)



Feedback

• Positive:
– look at bugs from a different perspective
– Attack bugs from the statistic experimentation

• Negative
– didn’t show how accurate the algorithm is 

(precision and recall)
– How useful is it?


